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The governing equations of the flow field which is obtained when a thermoelastic rigid 
porous medium is struck head-one by a shock wave are developed using the multi- 
phase approach. The one-dimensional version of these equations is solved numerically 
using a TVD-based numerical code. The numerical predictions are compared to 
experimental results and good to excellent agreements are obtained for different porous 
materials and a wide range of initial conditions. 

1. Introduction 
If a detailed analysis of the flow field that develops inside a porous medium which 

is struck head-on by a shock wave is required, then the process should be analysed 
using the multi-phase approach. In this approach, the porous medium is considered as 
multi-phase in which the various phases interact with each other. A detailed 
description of this approach was given by Baer & Nunziato (1986). A one-dimensional 
two-phase analysis of air as the fluid phase was presented by Baer (1988) and Powers, 
Stewart & Krier (1989). In addition to numerical solutions, Baer (1988) and Powers 
et al. (1989) also presented simplified analytical models for calculating the jump 
conditions across compaction waves in rigid porous materials. 

Biot (1956) was probably the first to apply the notion of wave propagation to porous 
media. This was basically in terms of microscopic representations of the phase balance 
equations with the framework of the theory of mixtures. A large number of papers 
have appeared in the literature following Biot's pioneering work. Among the recent 
ones are those by Smeulders, de la Rosette & van Dongen (1992), Degrande & de 
Roeck (1992) and Nigmatulin & Gubaidullin (1992). Most refer to the linear acoustic 
waves which occur when the momentum dissipation terms dominate. As an example, 
Attenborough (1982) presented a theory dealing with the motion of sound waves 
through an ideal saturated porous matrix with parallel cylindrical pores. Using 
microscopic physical parameters, he extended this to account for randomly distributed 
pores. An extensive literature survey of similar approaches is given by Corapcioglu 
(1991). 

Macroscopic momentum and energy balance equations, for a saturated porous 
medium, were developed by Levy et al. (1995) by conducting a dimensional analysis of 
the macroscopic balance equations of Bear et al. (1992) and Sorek et al. (1992). The 
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model developed is different to those mentioned above in its approach and hence yields 
different terms in the governing equations. It is novel in establishing the macroscopic 
theoretical basis for nonlinear wave motion in multi-phase deformable porous media. 
The model is based on conceptualizing the porous medium as a continuum composed 
of interacting compressible solid and fluid phases (saturated porous media). 
Macroscopic physical laws expressing mass, momentum and energy balances for the 
fluid and the solid matrix are formulated on the basis of the representative elementary 
volume (REV) concepts presented by Bear & Bachmat (1990). These macroscopic 
balance equations are composed of averaged flux terms together with integrals of 
microscopic exchange flux terms at the solid-fluid interface. Some unique macroscopic 
parameters which arise from the averaging process are the tortuosity factor which 
represents a tensor associated with the matrix directional cosines, the hydraulic radius 
of the pore spaces and the porosity which represents the volume fraction of the pores 
filled by the fluid. Note that unlike models developed in the past (e.g. Baer 1988), which 
account only for the properties of the phases, the macroscopic model developed in the 
course of this study also accounts for geometrical properties. Hence, in addition, the 
speed of the wave is also a function of the porous material structure. Unlike Bear & 
Bachmat (1990), Levy et al. (1995) showed that a Forchheimer term should be included 
as an additional macroscopic inertial term at the solid-fluid interface. 

A dimensional analysis was applied to the macroscopic balance equations of the 
phases after the simultaneous onset of abrupt changes of the pressure and temperature 
of the fluid. Levy et al. (1995) obtained four significant evolution periods. In the first 
evolution period, pressure, temperature and stress are spatially distributed without 
attenuation. The vertical stress, however, is linearly dependent on gravity. In the 
second evolution period, they noted the rise of nonlinear wave forms. In the third 
evolution period, the inertial and dissipation terms were found to be of the same order 
and, consequently, the entire macroscopic Navier-Stokes equations should be 
considered. In the fourth evolution period, the inertial terms were found to be 
negligible in comparison to the dissipation terms. Assuming that the friction between 
the solid and the fluid is higher than that between the fluid layers, the nonlinear Darcy 
law (ie. including a Forchheimer term) for the momentum balance equation of the 
fluid is obtained. Since the set of equations obtained was too complex to be solved 
analytically, subsequent investigations were aimed at simplifying the full set of 
governing equations by introducing simplifying assumptions, and then solving 
analytically the simplified models. 

Based on the findings of Powers et al. (1989) the governing equations were simplified 
by Levy et al. (19936) who proposed analytical expressions for calculating the jump 
conditions of the solid-phase properties across compaction waves in rigid porous 
materials. These expressions were found by solving the solid-phase balance equations 
without the interacting terms with the gaseous phase. This was justified by neglecting 
the gaseous-phase terms in the non-dimensional form of the overall conservation 
equations. The predictions of the model developed by Levy et al. (1993 b) were found 
to be better than those proposed by Powers et al. (1989) when they were compared to 
the experimental results of Sandusky & Liddiard (1985). 

In Bear & Sorek (1990) a mathematical model of an abrupt pressure impact applied 
to a compressible fluid flowing through saturated porous materials under isothermal 
conditions was developed. It was shown that during a certain time period, following 
the onset of the pressure change, the macroscopic fluid momentum balance equation 
conforms to a wave form. Krylov et al. (1996) presented a one-dimensional simple 
analytical solution of this wave equation. The wave equation was transformed to 
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Euler’s equation describing the motion of a ‘new’ fluid with properties related to the 
fluid which actually occupies the pores of the porous material. A similar analytical 
solution was presented by Sorek et al. (1996) for the non-isothermal case; they 
presented a method leading to generalized forms for fluid density, pressure and 
temperature. Using these generalized properties they wrote Euler’s equation as the one- 
dimensional expression for the analytical solution of the fluid equation of motion. To 
obtain this, the porosity, the matrix strain and temperature of the solid were developed 
as explicit function of the pressure. 

In a subsequent study, Levy et al. (1996) developed a macroscopic one-dimensional 
analytical model for describing wave propagation in rigid porous media. Unlike 
Krylov rt al. (1 996) and Sorek er al. (1 996), who neglected the momentum and energy 
exchanges between the two phases and assumed that the coupling between them was 
only due to the effective stress, in this study the momentum and energy exchanges 
between the two phases was also accounted for. Based on the dimensional analysis of 
Levy er ul. (1995), who showed that the linear Darcy term was much smaller than the 
nonlinear Forchheimer term, only the Forchheimer term appeared in the momentum 
and energy exchanges between the two phases. In addition, it was assumed in this 
model that both the porosity and the temperature of the solid phase remain constant 
and that the inertial force of the solid phase is negligibly small. 

Now that various simplified sets of the governing equations have been solved 
analytically, the aim of the present study is to solve the full one-dimensional set as 
developed and presented by Levy et al. (1995). Owing to its complexity an analytical 
solution is out of the question. This naturally leaves only one possibility, namely a 
numerical solution. It should be noted here that to the best of the authors’ knowledge 
such a solution has not been conducted as yet. Neither have the compaction waves been 
simulated in a porous medium described below, a TVD-based computer code for 
solving the governing equations was developed. Its predictions were compared to 
experimental results and very good to excellent agreement was evident. Many more 
details can be found in Levy (1 995). 

2. Three-dimensional governing equations 
A detailed derivation of the three-dimensional macroscopic governing equations 

describing the flow field in porous media was presented by Levy et al. (1995). In the 
following only the assumptions used in the derivation of the governing equations and 
the final form of the equations are given. The porous material is assumed to be ‘rigid’ 
in the loose relative sense commonly applied to porous materials in general and foams 
in particular, i.e. that deformations do not exceed a few percent. 

2.1. The assumptions 
The following assumptions are used. The fluid is ideal (i.e. pf = 0 and A, = 0 where pf 
is the dynamic viscosity and A, is the thermal conductivity). The fluid is a perfect gas. 
The dispersive and diffusive mass fluxes of the fluid, and the dispersive flux of the solid, 
are much smaller than the corresponding advective ones and may, therefore, be 
neglected. The dispersive flux of momentum is much smaller than the advective flux 
and may, therefore, be neglected. The microscopic solid-fluid interfaces are material 
surfaces with respect to the mass of both phases. The solid matrix is thermoelastic, and 
is assumed to undergo small deformations only. The stress-strain relationship for the 
solid, at the microscopic level, and for the solid matrix, at the macroscopic level, have 
the same form. The material of which the skeleton of the porous medium is made is 
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incompressible. The specific heats at constant volume, C,, and that at constant strain, 
C,, for the solid, are constant. The energy processes for the fluid and for the solid are 
reversible. There are no external energy sources. The energy associated with viscous 
dissipation is negligibly small. The conductive and dispersive heat fluxes of the phases 
are negligibly small when compared to their advective heat flux. The rate of heat 
transferred between the fluid and solid phases is negligibly small. 

2.2. The balance equations 
The macroscopic mass balance equation for the fluid phase is 

where p, is the density of the fluid, V, denotes its velocity vector and q5 denotes porosity. 
The macroscopic mass balance equation for the solid phase is 

where p, is the density of the solid (assumed to be constant) and V,  denotes its velocity 
vector. 

The macroscopic momentum balance equation for the fluid phase is 

a$P v 
-- - - V . $ p f V f V f - # T * V P - $ p f g T * V Z - & P Q p f ( q -  V,)(V,- V,), (3) at 2 4  

where P, which denotes the pressure of the fluid, is prescribed by the equation of state 
(see equation (7)), g denotes the acceleration due to gravity in the Z-direction, and 
T* denote the Forchheimer tensor for an isotropic solid matrix and the tortuosity 
tensor associated with the directional cosines at the solid-fluid interface, respectively, 
cf denotes a shape factor, and A ,  denotes the hydraulic radius of the pore spaces. 

The macroscopic momentum balance equation for the solid phase is 

a(1-4)P88 =-V.[(l-$)psv, v,]-(l-$)T,*VP 
a t  

+ V 4 + ( 1  - Q ) p , g V Z + % = $ p , ( ~ -  v,><v,- v,), (4) 
2 4  

where a: denotes the macroscopic constitutive relation for the effective stress of a 
thermoelastic solid matrix as given Bear et al. (1992), see equation (8). 

The macroscopic energy balance equation for the fluid phase is 

a 
- [$P,(C, Tf + f V3l = - v * [#P, VfWf Tf + f V3l at 

where Tf and C, are the temperature and the specific heat at constant volume of the 
fluid phase, respectively. 

The macroscopic energy balance equation for the solid phase is 
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where T, and C, are the temperature and the specific heat at constant strain of the solid 
phase, respectively. 

The equation of state for the fluid phase (i.e. a perfect gas) is 

P = p , q ;  (7) 

here % is the specific gas constant. 

deformations only, is 
The effective stress for a thermoelastic solid matrix, which undergoes small 

a:, = ~ ~ € s k ~ , / + ~ ~ ~ E s k ~ l - ~ ( ~ -  T,o)/> (8) 

where pi, A: and q denote Lame constants of a thermoelastic solid and / denotes a unit 
tensor. The macroscopic strain tensor for the solid matrix, E ~ ~ ~ ~ ,  is defined for small 
deformations by the compatibility law 

(9) 

in which w, denotes the displacement vector of the solid matrix. The volumetric strain 
(= dilatation), eskel ,  is given by 

€skel  = v * w,. (10) 

Combining (10) and (2) while recalling that py = constant (i.e. the solid material of 

ESkd = +[Vw, + (VW,)Tl, 

which the porous matrix is made is incompressible) results in 

in which the following definition has been used 

V , = -  Ds w, 
Dt 

2.3. One-dimensional governing equations 
In the present study, the one-dimensional version of the above three-dimensional form 
of the governing equations were solved. In a vector form these equations are written 
as follows: 

aU dF 
- + - = Q .  
a t  2.u 
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The source vector, Q,  is 

Q =  

where q5P and CT; which appear in (16) are defined as follows: 

#P = (y - 1) [Ef - mf/2rf l ,  
a: = Ec~-Ey,C,(T,- To). 

, 

In the above equations E,( = hi +pi) and ET( = V/C,) are the one-dimensional 
macroscopic Lame coefficients for a thermoelastic solid. With the aid of definitions (1 5) 
the porosity can be written as 

$ = 1 - r s l P s .  (20) 
By solving equation (2) analytically and with the aid of (15), the strain can be 

expressed as a function of the porosity as 

e = 1 -rs/rs,,  (21) 
With the aid of (15), equation (19) can be rewritten as 

The above set of equations consists of six differential equations, described by 
equations (13) and (14), and six unknowns namely: rf,rs,mf,rn,, Ef and E,. 
Consequently, in principle, the equations are complete and can be solved. However, 
owing to the complexity of the equations, an analytical solution of the set is impossible. 
Note that simplified cases were solved analytically by Levy et al. (1993 b, 1996), Krylov 
et al. (1996) and Sorek et al. (1996). Some of these solutions were verified by 
comparison with experimental results. Instead, a numerical solution has been 
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performed in the present study. Details of the numerical method are given in the next 
section. 

Note that in writing equation ( 1  3) we assumed that the gradients of the porosity were 
very small and therefore they might be written as source terms in the source vector, Q ,  
given by (17). As a result Q contains derivative terms and thus affects the character of 
the equations (hyperbolic rather than elliptic-hyperbolic). This is very convenient for 
numerical purposes and is correct only when the gradients of the porosity are very 
small as is the case in this study. Applying this procedure removes the ill-posedness 
associated with the elliptic-hyperbolic character of the equations which is usually 
manifested in highly oscillatory solutions as the mesh is refined. 

3. The numerical method 
An upwind TVD shock-capturing scheme, originally developed by Harten (1 983), 

was extended to solve the problem of two-phase flow which described wave propagation 
and interaction in saturated porous media. The scheme for solving equation (13) can 
be written in the following conservative form : 

U;+' = U; - h(e+l,2 - e-lJ + Are3, (23) 

h = At/Ax (24) 

where the parameter h is defined by 

and the numerical flux, 4+1,2, is evaluated from 

0.1, (aak/2U) Rk + 0 ' = ( 0 ,  (c?uk/c?U) Rk = 0.  

The eigenvalues, uk, of the Jacobian matrix A( U )  = W / 2  U were found symbolically 
by using the application Muthemuticu to be 

u1 = K-us,  u2 = Y,-uf, u3 = Y,, u4 = V,, a' = %+af, u6 = E+a,, (32) 
where uf and us are the equivalent speeds of sound of the fluid and the solid phases, 
respectively. They can be expressed as 

. $P(l-T*+yT*)T" u; = 3 

rf 
(33) 
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and 

The corresponding right eigenvectors, Rk, were found to be 

R4 = 

where 

and 

1 
0 , R 2 =  

K- 1, 

(3 5 a-c) 

Ef + Tf* g5P 
rf  

Hf = 

are the enthalpies of the fluid and the solid phases, respectively. 9, and 9, are defined 
by 9, = a f -  i$+ V,, 9, = a f+  5- V ,  
The parameters ~ l ~ + , ~ ,  were found by solving the linear equations 

6 

y+1- y = c a;+,/, R;+l/z 
k=l to be 

(C3-C4) 
2 

@,-(Ps-ts) T*)2;((2,+ V;- QC,-L?~ C,) 
2@, - t,) T*  2,(8, - 8,) (2, + 8,) 

+ 4 + 1 , 2  = , 
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FIGURE 1. Comparison between the analytical solutions (solid lines) and the numerical predictions 
(open circles) of the classical one-dimensional shock tube problem: (a)  density, (b)  velocity and (c) 
pressure. 
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where [b] = b,+l-bi, b is an average property in the interval [xi+l -.xi] and the 
parameters C, (for k = 1,2,3,4) are as follows : 

- - 

R -  

The boundary condition on the shock-tube endwall was simulated by using the 
image point method. The computational grid system was composed of 500 nodes. The 
computations were performed with a DecStation 5000/260 and an Indy R4400/150. 

The performance of the TVD scheme developed here was checked by simulating the 
well-known one-dimensional shock-tube problem. Figure 1 illustrates the analytical 
solution (solid lines) and the numerical predictions (open circles) for the fluid density, 
velocity and pressure distributions. The initial conditions for this simulation were 

- - 
1.17683 

0 
0 
0 

253312.5 
0 - 

where 
11.7683 

0 
0 
0 

2 533 125 
0 

The comparison between the analytical solutions and the numerical predictions of 
the present simulation clearly indicates that the numerical code developed here 
reproduces the one-dimensional shock-tube problem excellently. 

4. Experimental study 
The head-on collision of a planar shock wave with a rigid porous material was 

investigated experimentally in order to validate the predictions of the physical model 
and the numerical code. The experiments were conducted in the 75 mm x 75 mm shock 
tube of the School of Mechanical Engineering of the University of Witwatersrand 
in Johannesburg, South Africa. The incident-shock-wave Mach number range was 
1.2 d M ,  d 1.7 ; the initial pressures and temperatures throughout the experimental 
study were about 830 mbar and about 288 K, respectively. 

The rigid porous materials were made of silicon carbide (Sic) and alumina (A1203). 
The S i c  manufactured porous material had either 10 or 20 pores per inch and the 
Al,03 manufactured porous material had either 30 or 40 pores per inch. The porosity 
of these porous materials as well as the initial length, Lo, of the samples which were cut 
from them are given in table 1. The porosity, 4, was simply calculated from 
4 = 1 -pb/ps, where p b  is the bulk density of the porous material and p, is the material 
density of the skeleton of which the porous material is made. Note that the above 
expression is limited to gas-saturated porous materials as was the case in the present 
study. The cross-section dimensions of the samples were identical to those of the shock- 
tube test section. Consequently, they could not expand sideways but only be 
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408 

FIGURE 2. Schematic illustration of the experimental set-up and the locations of pressure 
transducers (numbered 1-8). All dimensions are in mm. 

The sample Sample Pores per Air Sample length 
material type inch (p.p.i.) porosity (mm) (m-l) T* 

10 0.728f0.016 40, 60, 81 300 0.7 
20 0.74510.001 41, 62, 83 500 0.7 
30 0.814_$0.010 48, 93 900 0.75 (r:I 40 0.821 f0.007 50, 99 1800 0.75 

{ Ii Silicon Carbide 
(SIC) 
Alumina 
( 4 0 3 )  

TABLE 1. The experimental samples, and their tortuosity and Forchheimer factors. The structure 
of the porous material was open cell. 

compressed in the direction of the propagation of the shock wave. Hence, they 
experienced a uni-axial strain (also known as tri-axial stress) compression. Twelve 
experiments were conducted with each sample. The models were mounted at the end 
of the driven section of the shock tube in such a way that their back edges were 
supported by the shock-tube endwall. 

A schematic illustration of the experimental set-up used during the present 
experimental study is shown in figure 2. Although there were eight pressure transducer 
ports, only seven of them were actually used in each experiment. The pressure 
transducers in ports 1 and 2 were used to measure the incident-shock-wave velocity. 
Pressure transducers were mounted in ports 4, 5 ,  6, 7 and 8 for the samples having an 
initial length up to (inclusive) 83 mm (see table 1). For the alumina sample with an 
initial length of 99 mm the pressure transducer of port 4 was moved to port 3. This was 
done in order to have a measurement of the pressure changes caused by the shock wave 
which reflected backwards from the front edge of the porous material. The pressure 
data acquisition was every 4 ps (for more details see Levy et al. 1993~).  
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Sample 
material 

Sic 
10 p.p.1. 

Sic 
20 p.p.i. 

A 1 2 0 3  
30 p.p.i. 

' 4 1 2 0 3  
40 p.p.i. 

Test Sample Initial Initial Shock Mach 
number length (mm) pressure (KPa) temperature (K) number, M ,  

40 83.04 290.0 1.378 
60 83.1 1 290.5 1.385 
81 83.4 1 290.5 1.377 
81 83.71 289.5 1.543 
81 83.70 290.5 1.734 
41 83.50 289.0 1.381 
41 83.44 289.5 1.533 
41 83.70 289.5 1.711 
62 83.62 290.0 1.378 
83 83.14 289.5 1.379 
48 82.84 292.0 1.374 
93 83.41 290.5 1.377 

83.36 291.0 1.539 
83.12 291.5 1.744 

50 83.09 292.0 1.374 
50 83.08 292.5 1.545 
50 83.10 292.5 1.741 
99 83.16 290.5 1.377 

{i 
( i  {! 93 93 

{ij 
TABLE 2. The initial conditions for the various experiments. 

5. Comparison between the numerical prediction and the experimental 
results, and discussion 

In order to solve equation (13) and compare it to the experimental results, the 
various parameters, namely the macroscopic Lame coefficients for a thermoelastic 
solid E, and E,, the Forchheimer factor p, the tortuosity T",  and the intrinsic density 
of the solid matrix ps, which appear in the physical model had to be estimated for each 
sample. Based on the properties of the materials of which the samples were made and 
the fact that the upper limit of the elastic stress reduces when the porosity increases, 
in a (1 -#J)~ manner (see Gibson & Ashby 1988), the order of magnitudes of the 
macroscopic Lame coefficients, E, and E,, were estimated to be identical for all the 
samples, at E, = 380 x lo' Pa and E,  = 26.207 Kg m-3. The sensitivity of the 
predictions of the numerical code to these coefficients will be examined in a future 
study. 

The intrinsic density of the solid matrix for all the samples (i.e. silicon carbide 
and alumina) as provided by the manufacturer (FOSECO South Africa Ltd) was 
ps = 2000 f 60 Kg m-3. 

The tortuosity factors, T",  for the various samples were found by estimating the 
ratio between the speed of sound of the air inside the porous medium, (33), and that 
in a pure air. The Forchheimer factors, F, for the various samples were found 
experimentally. In these experiments, each sample was mounted in a pipe and the 
pressure drop across it was measured as a function of the air flow rate. The pressure 
drop was found to be a parabolic function of the air velocity. This was done by 
assuming that the pressure drop depends linearly on the length of the sample. The 
values of the tortuosity and the Forchheimer factors, as obtained experimentally for 
the various samples, are also presented in table 1. 

In order to validate the physical model and the numerical code, (13) was solved 
numerically for different samples and initial conditions and compared to experimental 
results. Table 2 represents the initial conditions of 18 different experiments. The 
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F I G U R ~  3. Typical results of the experimental results and their numerical simulations with a 40 mm 
long sample made of S i c  having 10 pores per inch (i.e. sample I in table 1). The incident-shock-wave 
Mach number in this experiment was M ,  = 1.378 (i.e. test number 1 in table 2). The pressure histories 
of the pure gas just ahead of the front edge of the porous material are shown in (a) and (b). The 
pressure histories of the gas occupying the pores of the porous material along the shock-tube sidewall 
and at its endwall are shown in (c ) ,  ( d )  and (e), respectively. The symbols represent the experimental 
results and the solid lines are the numerically predicted values. P, is the pressure ahead of both the 
incident and the transmitted shock waves. P, is the theoretical pressure which should have been 
reached behind the incident shock wave, and is the theoretical pressure which would have been 
reached had the incident shock wave reflected head-on from a solid endwall. 



176 A .  Levy, G. Ben-Dor and S.  Sorek 

a 

0 0 5 1.0 1.5 2.0 2.5 3.0 

600 

0 
t . . . . I , . . , I  . , . . I . . , . l . . , , I  . . , l  

0 5  1.0 1.5 2 0 2.5 3.0 

0 0.5 1.0 1.5 2.0 2.5 3.0 

400 
x t  N 

0 0.5 1.0 1.5 2.0 2.5 3.0 

Time (ms) 
FIGURE 4. Typical results of the experimental results and their numerical simulations with a 40 mm 
long sample made of A1,0, having 30 pores per inch (i.e. sample I11 in table 1). The incident-shock- 
wave Mach number in this experiment was M ,  = 1.539 (i.e. test number 1 in table 2). The pressure 
histories of the pure gas just ahead of the front edge of the porous material are shown in (a). The 
pressure histories of the gas occupying the pores of the porous material along the shock-tube sidewall 
and at its endwall are shown in (b-e), respectively. The symbols represent the experimental results and 
the solid lines are the numerically predicted values. PI, P2, and P, are defined in the caption of 
figure 3. 

comparison between the predictions of the numerical simulations and the experimental 
results, for the cases appearing in table 2, are given in Levy (1995). 

Figures 3 (a-e) and 4(a-e) represent typical experimental results and their numerical 
simulations for the Sic  and A1,0, samples, respectively. PI is the pressure ahead of 
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both the incident and the transmitted shock waves, R2 is the theoretical pressure which 
should have been reached behind the incident shock wave, and P5 is the theoretical 
pressure which should have been reached had the incident shock wave reflected head- 
on from a solid endwall. The symbols represent the experimental results and the solid 
lines are the numerically predicted values. The pressure histories of the pure gas just 
ahead of the front edge of the porous material are shown in figures 3(a, b)  for the Sic  
and 4 ( a )  for the A1,0,. The pressure histories of the gas occupying the pores of the 
porous material along the shock tube sidewall and at its endwall are shown in figures 
3(c-e) for the Sic  and 4(b-e) for the Also,. 

Figure 3 (a--e) illustrates the comparisons between the predictions of the numerical 
simulations and the pressure histories as recorded by the various pressure transducers 
for an experiment with a 40 mm long sample made of SIC having 10 pores per inch 
(i.e. sample I in table 1). The incident-shock-wave Mach number in this experiment 
was M ,  = 1.378 (i.e. test number 1 in table 2). The pressure histories shown in figure 
3 (a-e) were recorded by the pressure transducers which were mounted in the ports 
numbered 2, 4, 5 ,  6, 7 and 8 in figure 2. 

Figure 4 (a-e) illustrates the comparisons between the predictions of the numerical 
simulations and the pressure histories as recorded by the various pressure transducers 
for an experiment with a 93 mm long sample made of A1,0, having 30 pores per inch 
(i.e. sample 111 in table 1). The incident-shock-wave Mach number in this experiment 
was M ,  = 1 .539 (i.e. test number 13 in table 2). The pressure histories shown in figure 
4(a-e) were recorded by the pressure transducers which were mounted in the ports 
numbered 2, 3, 5, 6 ,  7 and 8 in figure 2. 

It is clearly evident from these comparisons that the agreement between the 
experimental and the numerical results is very good. Note that there are disagreements 
between the numerical and the experimental positions of the reflected shock wave after 
it had travelled to a relatively long distance from the front edges of the samples (see 
figures 3a and 4 a ) .  The agreement was better in the case of low incident-shock-wave 
Mach numbers and short samples. This may be caused by the way the porosity gradient 
terms were treated in the source vector, Q .  

Although figures 3 and 4 describe the results of only two typical experiments, one in 
a silicon-carbide (Sic) sample and one in an alumina (Also,) sample, similar 
agreement was obtained in the comparisons with all the experiments which were 
conducted in the course of the present study. Details of all these comparisons are given 
in Levy (1995). 

6. Conclusions 
The general macroscopic balance equations, for a saturated rigid porous medium, 

were developed. Their one-dimensional versions were solved numerically using a TVD- 
based numerical code which was developed during the course of this study. The 
numerical predictions were compared to experimental results and good to excellent 
agreement was evident for different porous materials and for a wide range of initial 
conditions. To the best of the authors' knowledge, this is the first time that compaction 
waves have been successfully simulated inside a porous medium. 

We would like to dedicate this study which is a part of Avi Levy's PhD research to 
Professor Ami Harten. It was decided in the early stages of this study to develop a 
TVD-based computer code for simulating the phenomenon. For this reason Professor 
Ami Harten was asked to act as an external examiner. Ami was quite skeptical about 
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the possibility of developing the code. As reported in this study a TVD-based code was 
finally developed and the agreement between its numerical predictions and the 
experimental results were found to be very good to excellent. Unfortunately, Ami did 
not live to see the results. 
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